EIGHTEERING FOR COMMUNITY BERVICES						
Course Code	19HS5501C	Year	III	Semester	Ι	
Course Category	Open Elective	Branch	ME	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	NIL	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

ENGINEERING FOR COMMUNITY SERVICES

	Course Outcomes					
Upon succes	Upon successful completion of the course, the student will be able to:					
CO1 Understand the intricacies of engineering profession. (L2)						
CO2	Examine the role that engineering might play in the different aspects of sustainability development. (L3)					
CO3	Solve basic analytical and design problems using engineering tools, and be proficient and efficient in the use of these tools. (L3)					
CO4	Explore various awareness methods about safety, risk & risk benefit analysis (L4)					
CO5	Analyze what constitutes social justice in different areas of social life and the role that engineering might play in these. (L4)					

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H-High3, M-Medium-2, L- Low-1)						Strength								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						3	3	3				2	2	
CO2						3	3	3				2	2	
CO3						3	3	3				2	2	
CO4						3	3	3				2	2	
CO5						3	3	3				2	2	

		SYLLABUS						
UNIT	CONTENT Mapped							
NO.			CO					
	The Engine	ering Profession	CO1,					
	1.1	On being a Professional	CO2,					
Ι	1.2	Technical Expertise and Ethical Obligations	CO5					
	1.3	Organization of Professional Engineering						
	1.4	Engineering Codes of Ethics						
	Engineering	and Sustainable Community Development	CO1,					
	2.1	Understanding Community	CO2,					
II	2.2	Engineers' Beliefs about Community Development	CO4					
	2.3	Measuring Sustainability						
	2.4	Engineers as Problem Solvers						
	Engineers a	nd Development	CO1,					
ш	3.1	Engineering Disasters: Lessons to be Learned	CO3,					
111	3.2	Technology for Community Development	CO4					
	3.3	Renewable Sources of Energy						

	3.4	Green and Smart Cities	
	Safety of the	e Public	
	4.1	Ethical Dilemmas	CO1
	4.2	Calculating the Value of Life	CO1,
IV	4.3	Whistle blowing	CO3, CO4
1 V	4.4	Trusting the Experts	C04
	4.5	Case Studies:	
		a. Sinking of the Titanic	
		b. Bhopal Gas Tragedy	
	Engineering	g and Social Justice	CO1,
	1.1	Social Justice in Engineering Sciences	CO3,
V	1.2	Humanities and Social Sciences in Engineering Education	CO5
	1.3	Transforming Engineering Education and Practice	
	1.4	Making Social Justice Visible and Valued	

	LEARNING RESOURCES
	Reference Books:
1.	Deborah G. Johnson. (2020) Engineering Ethics: Contemporary and Enduring Debates. Yale
	University Press.
2.	Vesilind, P. Aarne., Gunn, Alastair S. (2010) Hold Paramount: The Engineer's Responsibility
	to Society. Cengage Learning.
3.	Luegenbiehl, Heinz., Clancy, Rockwell. (2017) Global Engineering Ethics. Butterworth-
	Heinemann, UK.

- 4. Traer, Robert. (2018) Doing Environmental Ethics. New York: Routledge.
- 5. Leydens, Jon., Lucena, Juan. (2017) *Engineering Justice: Transforming Engineering Education and Practice*. Wiley: IEEE Press.